
International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013                                                               587 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

Analysis and Simulation of a Single Generator-
Infinite Bus Power System under Linear Quadratic 

Regulator Control 
Ayokunle A. Awelewa, Ayoade F. Agbetuyi, Ishioma A. Odigwe, Isaac A. Samuel, Kenechukwu C. Mbanisi 

  

Abstract— The thrust of this article is to develop elaborate educational material on linear quadratic regulator (LQR)-based power system 
control for electrical engineering students, especially senior undergraduate and fresh graduate students. The paper considers a 
comprehensive description of a power system, which is represented by a network of a single generator connected to an infinite bus, 
highlighting modeling, analysis, and simulation of the system. Graphical outputs for various combinations of system state and input 
weighting matrices are presented. 

Index Terms— controllability and observability, linear quadratic regulator, model, single generator-infinite bus power system, state matrix, 
weighting matrix.   

——————————      —————————— 

1 INTRODUCTION                                                                     
ower system networks are interconnections of generat-
ing stations and loads by means of transmission lines 
that span several kilometers. The lines are high-tension 

cables that connect the generation to the transmission/sub-
transmission substations and distribution cables that ultimate-
ly supply the customer loads. Moreover, a typical power sys-
tem is a huge, complex network whose constitutive devices 
have different characteristics and response rates [1]. Therefore, 
its planning, design, operation, and maintenance require 
proper analysis and thorough understanding of various ele-
ments that compose it. It is, however, desirable that these ele-
ments operate together to ensure reliable, secure, and stable 
performance of the system at all time. Yet negative conditions 
or disturbances, such as single-phase to ground fault, three-
phase to ground fault, sudden outage of large generation or 
load, etc., which may adversely affect the system do occur. 
Although the effect of these disturbances vary in degree de-
pending on their location, type, and magnitude, their overall 
consequence is to shift the system from its steady-state opera-
tion, thereby making interconnected generators lose synchro-
nism. So a significant power system operating criterion is that 
generating units remain in synchronism [1] during normal and 
abnormal conditions such that the system is kept stable and 
secure. Meanwhile, synchronous generator excitation control 
constitutes one of the most widely used methods to effect res-
toration of system stability—especially to dampen out local 
plant and inter-area mode oscillations—after the system has 
been perturbed [2], [3] and many excitation control schemes 
based on optimal control have been developed [4], [5], [6]. But 
the aim of this work is to use a simplified power system net-
work to show the effect of varying system state and input 
weighting matrices on the dynamic performance of a power 
system. And this is particularly useful to beginners in the 
study of power system dynamics and control.   

The rest of the paper is organized as follows. In section 2 a 
detailed description of the power system model employed is 

presented. In Section 3 a brief overview of linear quadratic 
regulator control is covered. Graphical outputs from system 
simulation as well as discussion of results are outlined in Sec-
tion 4, and conclusions are drawn in Section 5.  

2 SYSTEM MODEL AND ANALYSIS 
The power system network considered in this work is a single 
synchronous generator connected to an infinite bus. The gen-
erator and the infinite bus are interconnected through a num-
ber of transmission lines. A generic representation of this is 
shown in Fig. 1 [7], and a concise description, depicting a re-
sultant impedance for all intermediate impedances between 
the generator and the infinite bus, is given by Fig. 2, where Rr 
and Xr are the resultant resistance and reactance, respectively.  
 
 
 
 
 
 
 

 
      Fig. 1. Generic representation of an SMIB. 
 
 

 
     

 
  Fig. 2. Concise representation of an SMIB. 

The considered network model, which comprises third-order 
state-space equations, is derived from the generator electro-
mechanical performance equations as well as the equations 
representing the relationships between generator quantities, 
transmission line parameters, and infinite bus quantities. For 
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equations capturing the electrical characteristics of the genera-
tor, Fig. 3 [7] is apt. Here the dq0 transformation based on the 
two-reaction theory of synchronous machines [8] is employed. 
The transformation is a procedure for mapping the three 
phases of a synchronous generator into equivalent three ax-
es—d-axis, q-axis, and zero-axis. (The zero-axis is a fictitious 
neutral axis included in order to have a valid invertible trans-
formation.)   

 
 
                                                                           
 
 
 
 
 
 
 
 

 
Fig. 3. Stator and rotor circuits of a synchronous 
            generator. 
In generating the electrical equations, one damper circuit 

each is located on the d-and q-axis, and the assumptions of 
sinusoidal distribution of stator windings along the air gap, 
negligibility of magnetic saturation and hysteresis effects, and 
constant rotor inductances vis-a-vis rotor position are consid-
ered [9], [10]. For stator circuits, the equations [7] are 

diaRrωqψdpψdv −−=  (1) 

qardqq iRωψpψv −+=  (2) 

 iRpψv 0a00 −=  (3) 
( ) 1dadfdaddladd iLiLiLLψ +++−=                  (4) 
( )  iLiLLψ 1qaqqlaqq ++−=

 (5) 
 iLψ 000 −=  (6) 

and for rotor circuits, the equations [7] are 
fdfdfdfd iRpψv +=  (7) 

1d1d1d iRpψ0 +=  (8) 

    1q1q1q iRpψ0 +=  (9) 

( ) dad1dadfdadfdfd iLiLiLLψ −++=  (10) 

( )  iLiLLiLψ dad1dad1dfdad1d −++=  (11) 

( ) ,iLi LLψ qaq1qaq1q1q −+=  (12) 

where  
• vd ,vq ,v0             : d-axis, q-axis, and neutral axis respective 

voltages 
• vfd                    : field voltage 
• id ,iq ,i0              : d-axis, q-axis, and neutral axis respective 

currents 
• ifd ,i1d ,i1q          : field and damper circuit currents 
• Ra                     : armature resistance per phase 
• Rfd ,R1d ,R1q    : rotor circuit resistances 
• ψd, ψq, ψ0           : d-axis, q-axis, and neutral axis respective 

flux linkages 
• ψfd, ψ1d, ψ1q    : field and damper circuit flux linkages 
• Lad                  : d-axis mutual or magnetizing inductance 
•  Laq                  : q-axis mutual or magnetizing inductance 
•  Lfd , L1d , L1q : rotor circuit leakage inductances 
• Ll                    : stator circuit leakage inductance 
• L0                   : neutral axis inductance 
• p                     : differential operator (d/dt). 

Equations (1)-(12), which are all given in per unit, form the 
fundamental expressions that completely depict the electrical 
characteristics of a synchronous generator. (The derivations 
are well spelt out in [7].) 

To complete the mathematical equations of a synchronous 
generator, equations of motion (often called swing equation) 
showing its mechanical characteristics are given by [11], [12] 

 
 ωdtdδ =  (13) 

( ) , dtdδDPP2H1dtδd em22 −−=  (14) 
where  

δ = rotor angle (radians) 
ω = rotor angular velocity (radians/s) 
Pm = mechanical input power in per unit 
Pe = electrical power in per unit 
H = inertia constant in per unit 
D = damping coefficient. 

The electrical power in (14) is given in terms of the dq0 quanti-
ties as [7] 

.i2vivivP 00qddde ++=  (15) 

And for a balanced system, (15) leads to 
   .ivivP qddde +=  (16) 

For a lossless transmission line, i.e., Re = 0 in Fig. 2, the 
equation relating the generator currents to the infinite bus bar 
voltage can be expressed as [9] 

e
q

d x
Ecosδv

i
−

=  (17) 

,
x

vEsinδi
e

dq
−

=  (18) 

where E is the infinite bus bar voltage.  
Furthermore, neglecting the damper circuits, armature re-
sistance, and the transformer voltage terms, pψd and pψq, 
while assuming constant rotor speed [13], the combined volt-
age and flux linkage equations are  

q0dv ψω−=  (19) 

d0qv ψω=  (20) 

fdfdfdfd iRpv +ψ=  (21) 
and 

( ) fdaddladd0 iXi XX ++−=ψω  (22) 

( ) qlaqq0 i XX +−=ψω  (23) 

( ) ,i XXiX fdfdaddadfd0 ++−=ψω  (24) 
respectively. 
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2.1 Nonlinear State-Space Model 
Equations (13)-(24) are now used to develop the state-space 
equations. The swing equations, (13) and (14), constitute the 
first two state equations in which the rotor angle and the 
speed deviation are the state variables, i.e., 

ω=δ  (25) 
( ).PDPM1 em −ω−=ω  (26) 

The equation describing Pe in terms of the network variables 
and parameters is derived in Appendix I (see (A.12)–(A.14)).  

The third state variable is normally chosen to account for 
the field circuit dynamics, and therefore, the choice of field 
flux linkage, ψfd, is most appropriate. In some literature [14], 
[15], E΄q, which is the q-axis component of the voltage behind 
transient reactance Χ΄d, is chosen as the third state variable, 
but this choice is equivalent to that of the field flux linkage 
because the two variables are related by 

fdffd
ad'q L

LE ψ=
 (27) 

The third equation is now given by (28). (See (A.1)–(A.11) in 
Appendix I.) 

( )   
XX

δ EcosXX

TXX

ψXXupψ
e'd

'dd

'doe'd

fedf






 +







 −

+






 +

+
−=

(28) 
The complete non-linear state-space model [2], [16], [17] of 

the system is given by (29) below. 

cosδCψCuψ
sin2δ

2
BsinδψAωABω

ωδ

2f1f

2f211
+−=

−−−=

=







 

(29) 

where 

;
TXXM

EA ; 
M
DA

'doe'd
21







 +

==  

( )
;

XXXXM

XXE
B ; 

M
PB

eqe'd

q'd2

2m1
+






 +







 −

==  

( ) .
XX

EXX
C ; 

TXX

XXC
e'd

'dd
2'doe'd

ed1






 +







 −

=






 +

+
=  

2.2 Linearized System State-Space Model 
The aforementioned model can further be simplified by linear-
izing it about a known operating point. This is carried out by 
using the Taylor series expansion technique. 
Therefore, expanding the non-linear state equation of eqn. 29 
into a Taylor series about Ω0 = [δ0 ω0 ψf0] and neglecting all 
the higher-order terms yields the matrix-form representation 
given by  

uBA ∆+∆Ω=Ω∆   (30) 
where 
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3
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0
0
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∂
∂

=  

and 

( )
00 u,001 u,f Ωδ=Ω   

( )
00 u,002 u,f Ωω=Ω   

( )
00 u,f003 u,f Ωψ=Ω   

( )0010 u,f Ω−δ=δ∆≡δ−δ=δ∆   

( )0020 u,f Ω−ω=ω∆≡ω−ω=ω∆   

( )003ff0fff u,f Ω−ψ=ψ∆≡ψ−ψ=ψ∆   
.uuu 0−=∆  

2.3 System Stability and State Matrix Analysis 
The parameters of the system considered in this work are [2]: 

9.0T                0.7X        0.3X              1.25X 'doq'dd ====  

1.0E                 0.2X       0.005D            0.0185M e ====  
The initial values of u and Pm are assumed to be 1.1p.u. and 
0.725p.u. respectively, while the steady-state values of the sys-
tem variables are given as [2]: 

7438.7        0      7438.0 fiii =ψ=ω=δ  
From the above-given information, the values of A1, A2, B1, 
B2, C1, C2, are computed as A1=0.270, A2= 12.012, B1 = 39.189, 
B2 = -48.048, C1 = 0.323, and C2 = 1.9, and are used to evaluate 
all the elements of the Jacobian (state) matrix, A, and those of 
the input vector, B, in the linearized system model as follows: 

0f  ;1f  ;0f

000000 u,f
1

u,
1

u,
1 =

ψ∂
∂

=
ω∂

∂
=

δ∂
∂

ΩΩΩ
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  ;534.64                   

cos012.122cos048.48f
00f0

u,
2

00

−=

δψ−δ=
δ∂

∂

Ω  

;1533.8sin012.12f 

;270.0f

0
u,f

2
u,

2

00

00

−=δ−=
ψ∂
∂

−=
ω∂

∂

Ω

Ω  

.1
u

f  ;323.0f

;0f;2896.1sin9.1f

0000

0000

u
3

u,f
3

u,
30

u,
3

=
∂
∂

−=
ψ∂
∂

=
ω∂

∂
−=δ−=

δ∂
∂

ΩΩ

ΩΩ  

And substituting these values into (30) leads to (31) below. 

u
1
0
0

323.002896.1
1533.8270.0534.64
010

ff
∆













+















ψ∆
ω∆
δ∆















−−
−−−=

















ψ∆
ω∆
δ∆







 

               (31) 
The stability of the linearized system can now be deter-

mined using the Lyapunov’s indirect stability method (other-
wise known as the second method of Lyapunov). It states that 
if a non-linear system is linearized about its operating point, 
and it’s observed that the resulting linearized model is strictly 
stable (i.e., all the eigenvalues of its state matrix are strictly in 
the left-half complex plane), then the equilibrium point for the 
actual non-linear system is asymptotically stable [15]. Compu-
ting the eigenvalues, λ1, λ2, λ3, of the system using the 
MATLAB function eig, we have λ1 = -0.2165 + 8.0315i, λ2 = -
0.2165 – 8.0315i, and λ3 = -0.16, so the stability condition is 
met. Likewise, the state controllability and observability of the 
system can be determined by performing the Kalman test [18]. 
It states that a dynamical system is completely state controlla-
ble if and only the rank of an n x n controllability matrix 

[ ]BABAABB 1n2 −  (32) 
is n; also, the system is completely state observable if and only 
if the rank of an n x nm observability matrix 





















−1n

2

CA

CA
CA
C



 (33) 
is n. (Here n represents the order of the system and m the 
number of system outputs.)  
Therefore, using (32) and (33), we can find the controllability 
and observability matrices (indicated by M and N, respective-
ly) of the system given in (31) as  

.
1533.800
2700.010
5340.6401

N;
1043.83230.01
8349.41533.80
1533.800

M














−
−
−

=














−
−

−
=  

 

3 LQR DESIGN 
The linear quadratic regulator establishes an optimal control 
law for a linear system with a quadratic performance index. 
Given the linearized system model in (31), the problem here is 
to determine the matrix K of the optimal control law 

ΩKu Δ−=∆  (34) 
in order to minimize the performance index 

,dtΔΔJ

0

TT∫
∞







 ∆∆+= uRuΩQΩ  (35) 

where Q is a positive-definite (or positive-semidefinite) Her-
mitian or real symmetric matrix, R is a positive-definite Her-
mitian or real symmetric matrix, and ΔΩ is the state vector. 
Substituting (34) into (35) yields 

∫
∞

∆





 +∆=

0

TT dt J ΩRKKQΩ  (36) 

Thus minimizing J in (36) results in the gain matrix [18], [19] 

,T1 PBRK −=  (37) 
where P is a positive-definite Hermitian or real symmetric 
matrix that satisfies the reduced Riccati equation 

,T1T 0QPBPBRPAPA =+−+ −  (38) 

4 SYSTEM SIMULATION 
The system is now simulated in MATLAB to show its perfor-
mance for various sets of values of Q and R. First, the open-
loop behavior of the system is shown in Fig. 4. Then for the 
closed-loop (LQR-controlled) system performance, two cases 
of the weighting matrices Q and R are considered. In the first 
case, R is fixed and Q is varied, while in the second case R is 
varied and Q is fixed. 
So the responses in Figures 5-8 show the case when R = 1 and 
Q = 0.1*I, I, 5*I, and 15*I, and likewise, those in Figures 9-11 
show the case when Q = 15*I and R = 0.1, 0.2, and 0.8. (Here I 
is 3 x 3 identity matrix.) 
 

 
            Fig. 4. System open-loop characteristics. 
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Fig. 5. LQR-controlled system characteritics (when Q = 0.1*I;  
           R = 1). 
 

 
Fig. 6. LQR-controlled system characteritics (when Q = I;  
           R = 1). 

 

 
Fig. 7. LQR-controlled system characteritics (when Q = 5*I;  
           R = 1). 

 
 

 
Fig. 8. LQR-controlled system characteritics (when Q = 15*I;  
           R = 1). 

 
Fig. 9. LQR-controlled system characteritics (when Q = 15*I;  
           R = 0.1). 

 
Fig. 10. LQR-controlled system characteritics (when Q = 15*I;  
           R = 0.2). 
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Fig. 11. LQR-controlled system characteritics (when Q = 15*I;  
           R = 0.8). 

From the analysis of the system characteristics, it could be 
inferred that though the system is stable, controllable and ob-
servable, oscillations of the system variables (rotor angle, for 
instance) take unbearably and undesirably long time (more 
than 25s) to dampen out. Also, it could be inferred that the 
performance of the system, when controlled by the LQR, var-
ies depending on the combination of the state and control 
weighting matrices, Q and R. When R is fixed and Q is gradu-
ally increased, the system dynamic performance shows signif-
icant improvement with a price of increased control effort 
though. Specifically, better performance is recorded when Q = 
15I and R =1 than at any other value of Q with the same R. It 
is also observed that with this value of Q and varying values 
of R, the behavior of the system improves greatly appreciably. 
Notably, at Q = 15I and R= 0.1, best dynamic performance is 
realized without much control activity—the maximum over-
shoot and the settling time for rotor angle are 0.033 and 1.5s, 
respectively.  

5 CONCLUSION 
A description, analysis, and LQR-based control of a single 
generator connected to an infinite bus have been considered in 
this paper. Specifically, stability, controllability, and observa-
bility of the system have been established using a linearized 
version of the nonlinear model describing the system.  Also, 
investigation of the system dynamic performance has been 
carried out under linear quadratic regulator control for vari-
ous combinations of input and state weighting matrices, with 
well displayed graphical outputs to show the results of the 
system simulation.  

APPENDIX 
Choosing ψfd as the third state variable, we can derive (28) in 
the body of the paper as follows: 
Combining (21) and (24) and solving for ifd result in 

( ) .
RpLL
piLvi
fdfdad

dadfdfd ++
+=  (A1) 

Substituting (A1) into (22) gives 

( ) ( ) 







++

+++−=
fdfdad

dadfdaddladd0 RpLL
piLvXiXXψω  
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pLXXX
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vX
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−+−
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=  

d'do
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fd
ad

'do
fd i
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v
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+
=

dd'do
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lfdad
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fad
fd

fd
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'do
fd iX

pT1

1p
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)LL(L
LL

LL
R

1

R
X

pT1

v





















+

+







+

++
+

−
+

=  

 iXiXiX
pT1

iXXpTu

ddfdaddd'do

d'dd'do
−≡−

+









−+

=  (A2) 

Variable u in (A2) is defined as 

.
R

Xvu
fd

adfd=  

Let Em (where Em is an arbitrary variable) be given as 

pT1

iXXpTu
iXEm

'do

d'dod'do
fdad

+









−+

==  (A3) 

Also, from (21), a new term pψf is obtained in terms of pψfd 
as illustrated below. 

( )fdadad
fdfdfdfdfd iXu

X
RiRvpψ −=−=

 
Hence,  

  Em,uiXupψ fdadf −=−=  (A4) 
where  

.ψ
R
Xψ fdfd

adf =  

And by combining (A3) and (A4), ψf can be expressed as 

   i XXEmTψ d'dd'dof 

















−−=  (A5) 

Again, from (19), (20), (23), and (A2), vd and vq can be ob-
tained as 

qqd iXv =  (A6) 

ddq iXEmv −=
 (A7) 

By using (A6) and (A7), (17) and (18) can be rewritten as 

edd XX
EcosδEmi
+

−=
 (A8) 

eqq XX
Esinδi
+

=

 (A9) 
Em can now be obtained in terms of ψf by using (A5) and 
(A8). 
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( )  
XX

EcosδXX

TXX

ψXXEm

e'd

'dd

'doe'd
fed
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−









+

+=  (A10) 

By using (A10), (A4) can be rewritten as 
  

( )   
XX

EcosδXX

TXX

ψXXupψ

e'd

'dd

'doe'd
fedf









+









−

+









+

+
−=  (A11) 

Equation (A11) is now the third state equation (see (28)). 
Also, an expression for Pe is computed by using (16) and (A6) 
– (A10) as follows 
 

qddqdqqqqdde iiXEmiiiXivivP −+=+=  (A12) 

Also, 

( )
( )( )

( )
( )( ) ,XXXX2

sin2δEXX
Em

XX
EsinδEm

XXXX
EsinδXX

P
edeq

2dq
eqedeq

dqe ++

−
−

+
+

++

−
=  

which, after simplification, gives 

( )
   

XX)X2(X

sin2δEXX

TXX

sinδEψP
eqe'd

2q'd

'doe'd
fe
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−
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=  (A13) 

REFERENCES 
[1] CIGRE Joint Task Force on Stability Terms and Definitions, “Defini-

tion and Classification of Power System Stability,” IEEE Trans. Pow-
er Systems, vol. 19, no. 2, pp. 1387-1401, May 2004. 

[2] L.N. Wedman and Y.N. Yu, ‘‘Computation techniques for the stabili-
zation and optimization of high order power systems,’’ IEEE Power 
Industry Computer Applications Conference Record, pp. 324-343, 
1969. 

[3] P. Kundur, D.C. Lee and H.M. Zein El-Din, ‘‘Power system stabi-
lizers for thermal units: Analytical Techniques and on-site valida-
tion,’’ IEEE Transactions, Vol. PAS-100, pp. 81-95, January 1981. 

[4] Q. Lu and Z. Xu, ‘‘Decentralized non-linear optimal excitation con-
trol,’’ IEEE Transactions on Power Systems, vol. 11, no. 4, pp. 1957-
1962, November 1996. 

[5] S. Takada, ‘‘Compensation of bus voltage fluctuation by means of 
optimal control of synchronous machine excitation,’’ Elec. Eng. Jap. 
(USA), vol. 8, pp. 42-52, 1968. 

[6] A. Ghandakly, P. Kronegger, “An Adaptive Time-Optimal Controller 
for Generating Units Stabilizer Loops,” IEEE-PES Trans. Power Sys-
tems, vol. PWRS-2, no. 4, pp. 1085-1090, November 1987. 

[7] P. Kundur, ‘‘Power system analysis and control,’’ McGraw-Hill Book 
Company, New York, 1994. 

[8] G. Krong, ‘‘Two–reaction theory of synchronous machines-part 2,’’ 
AIEE   Transactions, vol. 52, pp. 352-355, June 1933. 

[9] B.K. Mukhopadhyay and M.F. Malik, ‘‘Optimal control of synchronous ma-
chine excitation by quasilinearisation techniques,’’ IEEE Proceedings, vol. 119, 
no. 1, pp. 91-98, 1972. 

[10] M.F. Hasan and M.G. Singh, ‘‘A hierarchical model-following controller for 
certain non-linear systems,’’ Int. J. Systems Sc., vol. 7, no. 7, pp.  727-730, 1976. 

[11] H. Saadat, ‘‘Power System Analysis,‘‘ McGraw-Hill Book Company, Tata, 

2002. 
[12] P.M. Anderson and A.A. Fouad, ‘’Power System Control and Stability,’’ The 

IEEE Press, Power Engineering Society, Piscataway, NJ, 2003. 
[13] M.S. Ghazizadeh and F.M. Hughes, ‘‘A generator transfer function regulator 

for improved excitation control,’’ IEEE Transactions on Power Systems, vol. 
13, no. 2, pp. 435-441, May 1998. 

[14] D. Gan, Z. Qu and H. Cai, ‘‘Multi-machine power system excitation control 
design via theories of feedback linearization control and robust control,’’ In-
ternational Journal of Systems Science, vol. 31, no. 4, pp. 519-527, 2000. 

[15] Jean Jaques E. Slotine, and Weiping Li, ‘’Applied Non-linear Control,’’ Pren-
tice-Hall Edition, New Jersey, 1991. 

[16] P.C. Park, ‘‘Lyapunov redesign of model reference adaptive control systems,’’ 
IEEE Transactions, Automatic Control, AC-11, pp. 362-365, 1989. 

[17] M. Nambu and Ohsawa Y., ‘‘Development of an advanced power system 
stabilizer using a strict linearization approach,’’ IEEE Transactions on Power 
Systems, vol. 11, pp. 813-818, 1996. 

[18] K. Ogata, “Modern Control Engineering,” Third Edition, Prentice Hall, Upper 
Saddle River, New Jersey, 1997. 

[19] R.S. Burns, ‘‘Advanced Control Engineering,’’ Butterworth-Heinemann Edi-
tion, Woburn, 2001. 
 

Ayokunle A. AWELEWA is with the Department of Electrical & Infor-
mation Engineering, Covenant University, Canaan Land, Ota, Nigeria.  
His research areas include power system stabilization and control, and 
modeling and simulation of dynamical systems.  
 
Ayoade A. Agbetuyi is with the Department of Electrical & Information 
Engineering, Covenant University, Canaan Land, Ota, Nigeria.  His re-
search areas include renewable energy, power system stability and relia-
bility, and distributed generation and renewable energy.  
 
Ishioma A. Odigwe is with the Department of Electrical & Information 
Engineering, Covenant University, Canaan Land, Ota, Nigeria.  His re-
search areas include distribted generation with renewable energy sources, 
and power system stability analysis.  
 
Isaac A. SAMUEL is with the Department of Electrical & Information 
Engineering, Covenant University, Canaan Land, Ota, Nigeria. His re-
search areas include power system operation, reliability, and maintenance.  
 
Kenechukwu C. Mbanisi is a former student (September 2008- July 2013) 
of the Department of Electrical & Information Engineering, Covenant 
University, Ota, Nigeria. He is profoundly interested in and enthusiastic 
about modeling, analysis, and control of dynamical systems.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 4, Issue 10, September-2013                                                                                  594 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

 

IJSER

http://www.ijser.org/

	1 Introduction
	2 System MODEL AND ANALYSIS
	2.1 Nonlinear State-Space Model
	2.2 Linearized System State-Space Model
	2.3 System Stability and State Matrix Analysis

	3 LQR DESIGN
	4 SYSTEM SIMULATION
	5 CONCLUSION
	APPENDIX
	Let Em (where Em is an arbitrary variable) be given as
	And by combining (A3) and (A4), ψf can be expressed as
	Again, from (19), (20), (23), and (A2), vd and vq can be obtained as
	References



